
70 The Delphi Magazine Issue 70

SQL Tester
From Red Brook Software
Reviewed by Richard Stevens

SQL Tester is a utility which
allows you to manage and test

your SQL statements separately
from your Delphi application. You
can import the statements in a
number of ways, test them individ-
ually or in batches, make amend-
ments, and then restore them from
whence they came.

Installation And
Documentation
Installation was straightforward.
SQL Tester uses the BDE, which is
installed as part of the setup, as are
the MDAC data components and
the latest version of Crystal
Reports. You’re left with a single
icon on your Programs menu which
launches a neat-looking interface
(Figure 1) that was obviously writ-
ten with the Delphi database con-
trols: our old friends TDBNavigator
and TDBGrid are very much in evi-
dence. The layout is clear and sen-
sible, making it easy to select
different means of data access
(BDE or ADO), different database
aliases, and different tables from
within the selected database.

The documentation (a single
help file) is a bit disappointing. It
consists of a very bare and minimal
reference guide to the various

menu options, with nothing in the
way of examples or ‘how to’ expla-
nations. Even the individual refer-
ence entries lack a Next button,
which means you have to go back
to the top-level menu in order to
move on to the next item.

Using The Program
You can use the program in a
number of ways. The most straight-
forward, if hardly the most useful,
is simply to select a database alias,
type in a SQL statement, and press
the Executeoption. Parameters can
be entered manually using a simple
editor (Figure 2). Alternatively you
can load them in, a statement at a
time, from text files. Finally, and
most usefully, you can extract
them automatically from a Delphi
.dfm file, providing (a very impor-
tant proviso) that the file has been
saved in text format.

Your statements are stored as
records in a simple Paradox table,
and along with each statement is
stored an optional description, a
group code (used in batch testing),
the name of the database alias it is
associated with, and the type of
database access used. There are
tools for searching and filtering
records in order to locate particu-
lar statements, and they can also
be printed out in a simple report
format.

The ‘testing’ of SQL statements
is rather disappointingly basic.
Pressing the Execute button
against a single statement simply
attempts to execute the statement
and returns you either the result
set (in a grid at the bottom of the
screen) or the error message in a
standard database error dialog
box. There didn’t appear to be any
additional interception or work
done by the program in order to
identify or diagnose any problems
you may encounter.

You can also execute statements
in a batch, either by entering in a
range of record numbers, by speci-
fying a particular group code, or by
specifying that all statements
belonging to a particular database
be executed. At the end of this
process you get a simple dialog
reporting back your success/
failure ratio, along with a grid
displaying the statements that
failed (see Figure 3).

If you are entering in a lot of new
SQL statements which follow a
consistent pattern (eg, SELECT *
FROM Table where SomeCondition)
then you can create templates,
allowing you to easily insert multi-
ple commands of the same format.

Conclusions
I can’t fault the product for not
doing what it claims. It’s easy to
use and I encountered no prob-
lems using it. It’s certainly a nice
example of Delphi’s database
components in action. But it’s also
very difficult to get enthusiastic
about it: the program lacks a
number of those useful extra
touches and polishes which would

➤ Below: Figure 1
Right: Figure 2

June 2001 The Delphi Magazine 71

push it into the ‘highly recommended’ category. One
example of this is in the batch testing, where you are
told which statements failed but not what the error
message was. Similarly, you can’t execute statements
in a ‘safe’ mode: if you execute a statement that drops
every table in the database, it will do just that. And for a
product that is geared around writing and correcting
SQL, it’s a bit disappointing to be simply confronted
with a plain text editor in which to write and edit your
statements: some kind of syntax highlighting would
have been useful.

If you write a lot of SQL statements, then this is an
easy way of working through them and testing them. I
feel that potentially its most useful application is as a
‘reverse engineering’ tool for Delphi applications:
there are few tasks more tedious than picking through
a form or a data module and repeatedly opening up the
SQL editor to find out exactly what each query compo-
nent is doing. It could also be useful for checking
whether statements that work against one database
server will transfer happily to another, or in a training
environment.

In conclusion I’d say that SQL Tester is a competent if
uninspired program. There’s the potential for a handy
product here, but it needs a lot more work to make it a
‘must buy’ purchase. If it was offered as shareware I
would be more forgiving of its rather limited functional-
ity, but I feel a price tag of $195 is a little steep for what
you actually get. Visit www.redbrooksoftware.com for
more information.

Richard Stevens is a Director of BOE Information
Systems Ltd, a UK-based firm specialising in software
for the Commercial Property Sector.

➤ Figure 3

	Installation And Documentation
	Using The Program
	Conclusions

